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. ABSTRACT -

In order to clarify the extent to which the two-layer model can successfully simulate the remote tropospheric
response to localized stationary forcing, the structure of stationary Rossby waves in the two-layer model is
compared with that in continuous models. One finds a close correspondence when the two-layer flow is supercritical *
in the sense of the Phillips’ criterion, except for the possibility of upstream propagation in the two-layer model
when the lower-layer wind is small. When the two-layer flow is subcritical, the stationary waves can:be very
seriously distorted. The manner in which neutral modes are spatially or temporally destabilized by damping in
the two-layer model is contrasted with similar results for Charney’s model.

1. Introduction

This paper is the third in a sequence (Held et al.,
1985, 1986; hereafter referred to as HPP1 and HPP2,
respectively) on the linear theory of stationary external
Rossby waves in horizontally uniform mean flows with
vertical shear. In HPP1, the structure of these waves
was discussed, and their decisive contribution to the
stationary far-field tropospheric response to localized
thermal or orographic forcing emphasized. In HPP2,
general arguments were presented concerning the effect
on stationary external Rossby waves of such “dissi-
pative” mechanisms as thermal, Ekman, and potential
vorticity damping. It was shown that thermal and low-
level potential vorticity damping could be destabilizing;
such a possibility was illustrated with Charney’s model,
and its implications for stationary forced responses in
the atmosphere were discussed. Here we consider how
faithfully the two-layer mode] reproduces the essential
features of the continuous models treated in the pre-
vious two papers. We feel that the two-layer model will
continue to play a central role in studies of midlatitude
dynamics, particularly as more attention is focused on
such complex issues as the interaction between tran-
sient and stationary eddies (e.g., Hendon and Hart-
mann, 1985; Pierrehumbert, 1984, 1986). To evaluate
such studies, it is important to have a clear under-
standing of the relationship between stationary waves
in two-layer and continuous models, including the ef-
fects of dissipation on these waves.

* Contribution No. 34, Joint Institute for the Study of the At-
mosphere and the Ocean, University of Washington.
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Section 2 in this paper reviews the structure of the
two-layer model’s stationary modes in the case of both
subcritical and supercritical shear. As in the two pre-
vious papers, our interest is primarily in positive shears
and westerly winds. Lindzen et al. (1968) and Chen
and Trenberth (1985) have argued that spurious vertical
trapping of long waves in the two-layer model could
lead to false resonances and severe distortion of the
stationary wave field. Our view of the'value of the two-
layer model is considerably more positive; when the
shears are supercritical, the tropospheric wave trains
emanating from a localized source can often be quite
accurately represented in a two-layer model.

An important feature of the external stationary neu-
tral mode in the two-layer model is its upstream group
velocity when the shear is supercritical and the lower-
layer wind is small. [McCartney (1975) and Fandry
and Leslie (1984) are incorrect when they state that
the group velocity is always positive when winds and
shears are positive, but as they only work with sub-
critical shears their results are unaffected.] Supercritical
shear is the case of relevance to the extratropical tro-
posphere, and upstream group velocities clearly can
have a profound effect on the stationary wave pattern
forced by localized sources. This phenomenon is not
simply an artifact of layer models; in section 3 we de-
scribe a modification of the Charney profile in which
the surface temperature gradient is removed and show
that this continuous profile has similar ‘properties.
Nonetheless, if the two-layer model is meant to rep-
resent the more typical atmospheric profile with a
maximum temperature gradient at the ground, the
model will perform poorly when it allows upstream
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group velocities. In our view, it is this possibility of
upstream propagation, rather than spurious vertical
reflection, that most threatens to distort the stationary
wave response in the two-layer model. In section 3 we
also describe how the change in sign of the group ve-
locity of the stationary external mode, as the surface
wind decreases in two-layer or continuous models,
leads to the possibility of overreflection of horizontally
propagating waves even in the absence of critical layers.

Dissipative destabilization has been reported in a
number of two-layer studies: for the case of Ekman
pumping, see Holopainen (1961) and Wiin-Nielsen et
al. (1967); and for thermal damping, see the latter pa-
per, Haltiner (1967), and Pedlosky (1975). There can
be significant differences between the effects of a given
dissipative mechanism in' two-layer and continuous
models. For example, in the two-layer model, Ekman
pumping destabilizes some neutral modes, while in
Charney’s model it does not. In section 4 we examine
the manner in which both neutral modes in the two-
layer model are affected by the addition of Ekman
pumping, thermal damping, and potential vorticity
mixing. As in HPP2, the modal pseudomomentum or
wave action emerges as a simple unifying concept in
studying the effects of small amounts of dissipation on
neutral modes.

2. The stationary external mode

We consider two horizontally unbounded, incom-
pressible homogeneous fluid layers of equal mean depth
on a beta-plane, bounded above and below by rigid
horizontal surfaces. Quantities referring to the upper
and lower layers are given subscripts 1 and 2, respec-
tively. The Boussinesq quasi-geostrophic equations,
when linearized for unforced motions about mean
winds Uj; that have no horizontal dependence, become

dq; /9t + U;8q;/0x + @3, 0¢/0x =0, (j=1,2). (2.1)

The eddy potential vorticities g; and mean state po-
tential vorticity gradients (), are given by

@;= VAt (- 1YWL — ¥2/2N),
Qp=B— (1Y (U~ Un)/(2N),

where A is the Rossby radius of deformation.
Writing stationary normal mode solutions in vector

form,
("Vl) = (‘l") i) = pitx+ly).
Vi) \{2
reduces (2.1) to the matrix eigenvalue problem
(QW/U!— /(2N 12N ) _xw
1/(2)) Q5/Uy—1/(2N%)) '
2.3)
where, as usual, K* = k2 + /2. In (2.3) it has been
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assumed that the layer winds are not zero. Considered
as an eigenvalue problem for K?, the symmetry of the
matrix in (2.3) implies that all eigenvalues are real.
Modes corresponding to positive K? are horizontally
propagating and therefore relevant for the far-field re-
sponse to localized forcing, It is convenient to nondi-
mensionalize velocities with BX? (the critical value of
U = (U, — U,)/2 for inviscid normal mode instability)
and lengths by A. We carry out this nondimensional-
ization without change in notation; in particular, the
critical shear for instability becomes U = 1, and the
upper- and lower-layer potential vorticity gradients,
respectively, become 1 + U and 1 — U. Solving the
eigenvalue problem for K? then gives the two-layer dis-
persion relation

K2= {K2+ K2~ 1 £ (K2 — K2P + 1)'2)/2, (2.42)
where
K2=(+U0yU, K?2=@1-0)U,. (2.4b)

Aspects of this dispersion relation have been discussed
by Pedlosky (1979) and Fandry and Leslie (1984),
among others.

Each eigenvector W is taken to be real and normal-
ized so that {¥, ¥) = 1, where {(a, b) = (a; b, + a2 by)/
2. The amplitude ratio « = ¥, /¢, for an eigenvector is

a. =K2 = K (K2 - KD+ 112, (2.50)
=2K2— K+ 1, (2.5b)

where the choice of roots agrees with that in (2.4a).
The positive square roots in (2.4a, 2.5a), henceforth
denoted by K% and «,, respectively, refer to the external
mode, which becomes barotropic in the limit of zero
shear. The squared wavenumber of the external mode
lies between the K7; in fact,

(K2 +K7)2 < K7 <max(K.?, K7),

where the inequalities are strict for positive U, and U.

Figures la, b show the behavior of the two branches
of K* as a function of U, for subcritical (U = 0.5) and
supercritical shear (U = 1.5). The bold curves in the
figures highlight the external mode for westerly lower-
level winds. When the shear is supercritical and U,
> 0, the stationary wavenumber for the external mode
is bounded above by the wavenumbers corresponding
to instability, but in the subcritical case, K,? behaves
as in barotropic models, being unbounded as U, ap-
proaches zero. For Charney’s model, K,? is always
bounded above, no matter how small the vertical shear,
by the wavenumbers corresponding to the Charney
mode instability. This difference between super- and
subcritical cases becomes important when considering
the structure of stationary external Rossby waves
propagating from midlatitudes into the tropics. As the
waves approach the latitude at which the Jow-level wind
changes from westerly to easterly, smaller and smaller
horizontal scales will be generated by the two-layer
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FIG. 1. (a) The two-layer dispersion relation [the two solutions to Eq (2.4a)] for
subcritical shear U = 0.5. Wavenumbers are in units of A~! and winds in units of SA2.
The external mode in the region of positive lower-layer wind is emphasized by a heavy
line. Values of the amplitude ratio are indicated along modal curves; for the internal
mode as K? = (1/20)%, a = +o0. (b} As in (a) but for supercrmcal shear U = 1.5.
The insert shows clearly the region of westward group velocity, 3K, 2/aU, > 0 for the
statlonary external mode at small Us. As K? = (1/2U)%, a = *c0.

model if the shear is subcritical. On the other hand, if
the shear is supercritical, the scale of the éxternal mode
remains well behaved as the waves approach the lower
layer’s critical latitude. (This argument assumes that
- the transition occurs sufficiently slow for a local dis-
persion relation to be relevant.) The implication is that
the two-layer model could seriously distort the station-
ary wave pattern in the subtropics when the shear is
subcritical at the latitude of the low-level transition to
easterlies.

Two important facts can be proved by algebraic ma-
nipulation of the dispersion relation:

1) For westerly surface winds and positive shears,
the external mode is always horizontally propagating
(K2 > 0). This was noted in McCartney (1975) and
found in HPP1 to be the case for linear shear (Charney)
and hyperbolic tangent profiles.

2) For westerly winds in the two layers the internal
mode propagates only if the shear is subcritical and
the surface wind is less than 1 — U. Defining U= (U,
+ U,)/2, this condition is equivalent to U < 1. For the
Charney profile discussed in HPP1, none of the internal
modes are horizontally propagating, regardless of sur-
face wind speed, if r < 1 [recall that r = BN?H/( f 23U/
8z)]. In this sense the two-layer parameter U~! plays
the role of r. ~

Figure 2a shows the number of horizontally prop-
agating stationary modes as a function-of U, and U in
the two-layer model. Figures 2b and 2¢ show the num-
ber of horizontally propagating stationary modes in
the Charney model [U = U, + Az; N> = constant] and
a hyperbolic tangent shear flow [U = Uy + (U, — Up)
tanh(z/1.5H); N? = constant] as a function of the sur-
face wind and vertical shear. (In Charney’s model there

are an infinite number of discrete modes, only a finite
number of which can be horizontally propagating; for
the hyperbolic tangent profile, there are a finite number
of modes, all of which can be horizontally propagating.)
For small surface winds, the behavior of the two-layer
model is analogous to that of the continuous models:
only one horizontally propagating mode exists for large
vertical shears, and a second mode appears as one de-
creases the vertical shear. The two-layer model natu-
rally misses the higher internal modes that appear at
still smaller shears. When the vertical shear is identi-
cally zero, the continuous model possesses only one
mode, the external mode. In this limit, the second mode
of the two-layer model is clearly artificial (Lindzen et
al., 1968). Charney’s model has the unrealistic feature
(due to the unbounded winds) that the number of hor-
izontally propagating models does not decrease as A
approaches 0 with U fixed. In contrast, for the hyper-
bolic tangent profile, the internal modes disappear one
by one as the shear is decreased until only the external
mode remains. Note how small A must be before the
internal modes disappear. Only in exceptionally weak
vertical shears is it correct to think of the second hor-
izontally propagating mode in the two-layer model as
artificial.

Values of the amplitude ratio « are indicated along
the modal curves in Fig. 1. From (2.5b) we see that for
supercritical shear and positive lower layer wind, «a,
> 1, in analogy with the upper tropospheric maximum
found in continuous models. For subcritical shear the
external mode has greater amplitude in the lower layer
when the westerly surface wind drops below 1 — U,
i.e., when the internal mode becomes horizontally
propagating. The supercritical and subcritical cases also
differ dramatically in the structure of the external mode
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FIG. 2. (a) The number of horizontally propagating modes in (a) the two-layer model; (b) the linear shear profile
(the “Charney model”), and (c) the hyperbolic tangent profile of HPP2.

for small positive surface winds: in the supercritical
case the amplitude is concentrated in the upper layer,
and in the subcritical case in the lower layer.

A bound on the amplitude ratio of either mode in
terms of the ratio U,/U, which will prove useful can
be established by verifying algebraically that U,/U,
— « has, for positive shears, the same sign as U, /U,.
For lower-layer westerlies, it follows that while the am-
plitude of the external mode increases with height when
it is the only horizontally propagating mode, the am-
plitude increase is less rapid than that of the mean
wind. This behavior is analogous to that found in the
Charney model (see Fig. 1 in HPP1), and will play a
similar role in the discussions of thermal forcing and
destabilization below. ,

Another difference between the subcritical and su-
percritical cases concerns the group velocity of the sta-
tionary external mode. By Galilean invariance the
group velocity of a stationary wave is given by

G =—2k(@K*aU,)"\(k, ) (2.6)

(where the partial derivative is taken at fixed U) so that
the zonal group velocity G, of each mode is propor-
tional to the slope of the respective curve in Fig. 1.
From the figure it can be seen that while the group
velocity is finite and positive for all values of the lower-
layer wind in the subcritical case, in the supercritical
case the external mode’s group velocity becomes infl-
nite for a weak westerly wind whose value depends on
the shear. (In Charney’s model, this infinite group ve-
locity is realized only in the limit of vanishing surface
wind; in the other continuous models considered in
HPP! the group velocity was always bounded.) For
still smaller lower-layer winds the group velocity has a
westward component, a result that can be obtained
from (2.3):

—0K2 (10U, = (K /U A+ (KX U)AY2, (2.7a)
where 4. = 1 + (K? — K)[(K2 — K5?)* + 1172 From

the positive definiteness of 4. it is clear that the crucial
term is K,2 = Q,,/U,: if the potential vorticity gradient
in the lower layer is positive, G, cannot be negative;
but if the shear is supercritical, G, will always be neg-
ative for sufficiently small lower-layer wind.

Another form of (2.7a) can be derived directly by
differentiating both sides of the matrix equation (2.3)
with respect to U, and then taking the scalar product
with the normalized external eigenvector:

_aKez/a U2 = (QIez/Qly + q2e2/Q2y)/2- (27b)

We refer to the expression on the right-hand side of
(2.7b) as the vertically averaged pseudomomentum and
denote it by P. (Note: our choice of sign in defining
the pseudomomentum is not conventional. Edmon et
al., 1980, discuss the connection between P, which they
call “wave activity,” and Eliassen-Palm flux.) The
zonal group velocity has the same sign as P: from (2.7b)
and (2.6) it follows that

G P=2k?%

as in continuous models (see HPP2).

In none of the cases considered in HPP1 were the
group velocity or pseudomomentum of the external
mode negative. In the two-layer model, the value Ujp
of the lower-layer wind at which the sign change occurs
is shown in Fig. 3 as a function of shear. The region
of parameter space in which the pseudomomentum
and group velocity are negative is not negligible; for a
supercritical flow with U = 2, upstream propagation
occurs for U, < 0.33, or 3.3 m s~! if we choose SA?
=10 m s~!. Given that it is not found in Charney’s
model or the continuous models analyzed in HPP1,
this upstream development in the two-layer model
should be considered artificial when the shear is su-
percritical and lower-layer winds are weak westerlies.

When the external mode is the only horizontally
propagating mode, the problem of determining the
steady far-field response to localized forcing reduces to

(2.8)
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FiG. 3. The value Up of the lower-layer wind at which the group
velocity of the external mode changes sign, as a function of super-
critical shear.

one of determining the projection of the forcing on the
external mode. In terms of the meridional velocity v
= (vy, V) = (8Y1/0x, AY»/3x), the total response to
orography and diabatic heating satisfies the (nondi-
mensional) equation

(v2—1/2+1<12 12 (v1
V2—1/2+K22) vz)

1/2
=( —Q/U, ) 2.9)
Q/U,—dh/dx

where heating is modeled as a transfer rate Q of mass
between layers and £ is bottom topography. The equa-
tion satisfied by the projection (v, v,) on the external
mode can be deduced by taking the inner product of
both sides of (2.9) with v,.. The symmetry of the matrix
M in (2.9) implies that (Mv, v,y = (v, Mv,) = (V*
+ KX, v.); writing the external mode as v, = (v,
Vgy), wWe have

(V2 + K2 (v, v)
= —[ve20h/8x — QVe2/ Uz = 01 /UNY/2.  (2.10)

The expression multiplying Q in (2.10), Qg = (ve2/
U, — v,,/U)), is the two-layer analogue of the heating
efficiency factor —d(v,U™')/dz in continuous models
(see HPP1). The sign of Q. is the same as that of (U, /
U, — a,), and hence of U, /U,; for-positive shears and
surface winds Q. is positive, as in the continuous
models.

Equation (2.8) takes the form of the barotropic vor-
ticity equation linearized about the “equivalent baro-
tropic wind” U, = K, 2. This is the wind which yields
the correct stationary wavelength when substituted into
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the familiar Rossby formula (U, = 8K,”? in dimen-
sional form). By averaging the two equations in (2.1),
one can show that

Ue = (S&e! Ul + ¢e2 U2)/ (‘!’el + \beZ)
= Up+ Ua,— 1)/(ae+1)

For supercritical shears, «, is larger than 1, so that U,
is greater than the average wind U, consistent with the
upper tropospheric equivalent winds found in HPP1.
As U, approaches 0 with fixed supercritical shear, U,
approaches U,. '

]. (2.11)

3. A modified Charney profile

It is natural to ask whether the behavior of the group
velocity of stationary waves in the two-layer model is
shared by any continuous models. We demonstrate that
it is: analogous behavior is found in a model obtained
by modifying the Charney profile so as to remove the
temperature gradient near the surface.

We work in log-pressure coordinates. Writing the
mean state in the form Uy + U(z), with U(0) = U and
U'(0) = A, and assuming that N? is constant, we can
nondimensionalize (x, y, z, U) by (NH/fo, NH/fs, H,
AoH) where H is the scale height, and put the potential
vorticity gradient in the form

0,=r+U(2)— U"(2) —2U'(2)i(2)

where r = BN2H/( fo>Ao). The eigenvalue problem takes
the form Ly = K%y, where n = e¢~#*) must vanish at
great heights, and L = d?/dz* — [1/4 — Q,/U + §(2)].

The profile which we will refer to henceforth as the
“modified Charney profile” is given in nondimensional
form by

KZZ/2+ Uo, !

z—(2x)" + Uy,

(see Fig. 4). For this profile, the é-function term in Q,
vanishes because there is no shear at the ground, and
instead we have

Z2<Z, =K

U(z)={

7>z,

r—k+«kz,
I+r,

z<2z,

Qy(z) = {

z=2Z,.

Lindzen and Farrell (1980) discussed a similar modi-
fication of a piecewise linear profile, inserting a region
near the ground of constant Q, rather than constant
curvature. There is now a critical parameter for insta-
bility, for if k < r, or equivalently if z, > 1/r, the cur-
vature is sufficiently spread that Q, is everywhere pos-
itive. As z. shrinks to zero the Charney profile is re-
covered (as in HPP1, we ignore the “non-Doppler”
term in the lower boundary condition). Figure 5 shows
the convergence, for fixed r = 0.5, of the modified ex-
ternal mode dispersion relation to the Charney relation
as z. approaches 0. (For each Uj, the eigenvalue prob-
Iem is solved by a combination of shooting and New-
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FIG. 4. The modified Charney profile.

ton’s method similar to that described in HPP1). As
the figure shows, for z. > 0 the external mode has sim-
ilar behavior for small surface winds to that seen in
Fig. 1b: there is a region of negative group velocity
which shrinks as z, approaches 2, the critical value for
instability when » = 0.5. All of the internal modes are
horizontally trapped for r = 1 in the Charney model,
and this is also true in all the cases shown in the figure
except z. = 1.7. Unlike the two-layer case, the transition

0.0 02
C-Ug T
-0IF
Charney

-0.2+ \
-0.3r

-0.41

-0.5

FI1G. 5. The convergence of the external mode dispersion relation
for the modified profile to the external mode (bold curve) for the
Charney profile, as z, approaches zero. Wavenumbers are in units of
(NH{fy)"" and surface winds in units of A H. The nondimensional
beta parameter r is 0.5 in all cases.
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FIG. 6. The external Green, and Charney modes near the branch
point for the modified Charney profile with 2. = 0.25, r = 0.5. Relative
phase speeds ¢z — U(0) are shown with solid lines, and values of ¢,
with dashed lines; speeds are in units of AH.

from a trapped to propagating first internal mode does
not occur exactly at the critical z., but at a smaller
value: when r = 0.5, the first internal mode is trapped
only for z, < 1.65. Further calculations show that the
negative group velocity is still present if a small amount
of shear at the ground is allowed. Similarly, the jump
discontinuity in Q, can be removed by using smoother
profiles.

For the two-layer dispersion relation, an instability
emerges just at the point where dK%/dU, = 0. Similar
behavior occurs here; Fig. 6 shows the dispersion re-
lation for the modified profile near the point in question
when z, = 0.25 (and r = 0.5). Denoting by ¢ the-phase
speed at which the external mode branches into the
Green and Charney modes, one finds it clear that the
effect of the modification has been to move ¢z below
U(0) (compare Fig. 1 of HPP2). Figure 6 also illustrates
the remark of Miles (1964) that for the Charney profile
the Green mode seems at its onset to be qualitatively
different from the Charney mode. Here we see that the
modified Charney mode still becomes unstable at the
bifurcation point, while the Green mode becomes un-
stable only as it encounters a critical layer. The figure
further suggests that only the part of the two-layer ex-
ternal mode dispersion relation with positive pseu-
domomentum exhibits behavior parallel to that of the
external mode in the Charney model. The part with
negative pseudomomentum is more akin to the unsta-
ble Green mode.

We know from the work of Geisler and Dickinson
(1975) that inclusion of the so-called “non-Doppler”
term in the lower boundary condition in Charney’s
model also introduces a very small region of instabilities
without critical layers; i.e., cg — U(0) becomes slightly
negative. It is now clear that the “non-Doppler” term
is not required for Cp — U(0) to be negative.

A curious consequence of the change in sign of the
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pseudomomentum, or group velocity, of neutral modes
is the possibility that meridionally propagating waves
may be overréflected even in the absence of critical
layers. As an example, consider the following (admit-
tedly somewhat contrived) two-layer scattering prob-
lem: north and south of a shear zone the basic state
winds are asymptote to positive constants, but to the
north, the lower-layer wind, U,, is sufficiently large
that the pseudomomentum P of the external mode is
positive, while to the south it is small enough that P is
negative. The vertical shear is a fixed supercritical value
and all nonconservative effects are assumed absent.
Numerical calculations show that a stationary external
mode wave train incident from the north is overre-
flected from the shear zone, with the overreflection in-
creasing as the meridional shear is reduced. This result
may be understood as follows. Any steady solution
must have the property that the convergence of the
pseudomomentum (or Eliassen-Palm) flux is every-
where zero, and as the external mode is the only hor-
izontally wavelike solution, far from the shear zone
there will be only transmitted and reflected external
waves. Because the transmitted wave carries away neg-
ative pseudomomentum, to avoid a convergence of
pseudomomentum flux the reflected wave must export
more positive psscudomomentum than imported by the
incident wave; overreflection must occur. Furthermore,
as the meridional shear becomes more gradual, the ov-
erreflection increases. It becomes infinite in the limit
that a WKB approximation is valid, for then the change
in sign of group velocity means that a single WKB
wavefunction can represent both the transmitted and
reflected waves, with no incident wave present. A sim-
ilar argument can clearly be made for the modified
Charney model.

4. Dissipative destabilization

We turn now to the effects on the external mode of
various “dissipative” mechanisms. To study these ef-
fects we introduce positive parameters YTs Ymjs Ypi
(J = 1, 2) for thermal, mechanical, and potential vor-
ticity damping, respectively, and modify (2.1) to

0q; /3t + U;8q;/0x + ;09 /9x

=Wy — vy g = vV (1)

where ¢’ = (Y1 — ¢¥3)/2 and j = 1, 2. For mechanical
damping, we restrict attention to a lower Ekman layer
(Y1 = 0, Ym2 = vex = 0).

We consider modes with space-time dependence
expli(kx + Iy — wt)], hold the meridional wavenumber
at a constant real value for simplicity, and examine
the behavior of w = wg + iw; as a function of real k
and v (temporal destabilization) and the behavior of
k = k, + ik; as a function of real w and +y (spatial
destabilization). The latter is relevant for the effects of
dissipation on the amplitude of stationary (w = 0) wave
trains.
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Using overbars to denote zonal averages, (4.1) yields
a conservation law analogous to (4) in HPP2:

0P/t =M — (v q' —y1¥ )1 /Qyy

—(YeVYo+ Y @h +y19 )5/ Qoy  (42)

where M is the momentum flux convergence
—d(u v}, + u5v%)/dy, and P is the pseudomomentum.

For normal modes on a horizontally uniform flow, M
vanishes and dP/dt = 2w, P, so if we fix k and focus on
one dissipative process with strength proportional to
v, (4.2) is of the form

2w/(7)P(y)=vD(v)

where D is the quadratic quantity on the right-hand
side of (4.2) appropriate to the choice of +y. Inviscid
unstable modes as well as marginally stable neutral
modes have zero psecudomomentum. For modes with
nonzero P, expanding about a neutral point we have
to lowest order in vy

(0w1/37)y=0=D(0)/[2 P(O)]. (4.3a)

To establish the connection with the spatial destabili-
zation problem, we note that implicit differentiation
of the dispersion relation w = Q(k, ) gives

—(99Q/0k), (0k/9v) = (9D )k

(cf. Gaster, 1962). But the first expression on the left
evaluated at v = 0 is just the zonal group velocity of
the neutral mode, so taking imaginary parts results in

~Gl0ki/0Y),-0= Bwr/3V)ye0.  (4.3b)

Since spatial growth in the direction of propagation
occurs when k; and G, have opposite signs, the con-
clusion from (4.3a, b) is that positive D(0)/P(0) implies
spatial as well as temporal destabilization.

For the case of lower-layer Ekman pumping we have
D(-y EK) = q2V ¥2/Q»,. For a stationary neutral mode,
VA, = —K*; and ¢,/Q,y = —»/Us, so that

0w /0vexk=—K 2\022/ (2PUy),
Ok1/dvEx = —¥22/(4U),

assuming P # 0. Therefore, a mode is destabilized if
PU, is negative (in a frame of reference moving with
the wave) and stabilized if PU, is positive. Figure 7a,
b shows the propagating neutral modes that are desta-
bilized for subcritical and supercritical shears. Recalling
that the sign of P is the same as the slope of the dis-
persion curve, we see that both modes in the subcritical
case have positive P, so that those modes propagating
westward with respect to the lower layer wind (U, > 0
in the figure) are stabilized, while those with phase
speeds greater than the lower-layer wind (U, < 0) are
destabilized. In the supercritical case, the external mode
is stabilized when U, is large, but for small U,, the
change in sign of P results in destabilization. Short
waves propagating eastward with respect to the lower-




15 OCTOBER 1987

@ U=0.5

Uz
F-4.0

l-3.0

F-2.0

PANETTA, HELD AND PIERREHUMBERT

2931

M U=1.5
Uz
Fo30 e meaaan

L-20 "

€K, PV

40 -30 20 -0 i

4.0

- 1 K2
IR 20 30 40

1

207 tpvy

4.04

FIG. 7. The parts of the two-layer dispersion relation for which the p;eudomomentum
argument predicts temporal destabilization by Ekman (EK), potential vorticity (PV),
and thermal (T) damping. (a) U= 0.5, (b) U = L.5.

layer wind are also destabilized. There is no analogous
destabilization of neutral modes by Ekman pumping
in Charney’s model, since there are no stationary neu-
tral modes with P of the same sign as the surface wind.
(However, there would be destabilization near the long-
wave cutoff in the modified Charney model of sec-
tion 3.)

From Fig. 7a, b, one can conclude that the addition
of weak Ekman pumping causes the disappearance of
both the critical shear for instability and the short-wave
cutoff, but that a long-wave cutoff is retained. Figure
8a shows the growth rates for yg = 0.1l and U= 1.5
after subtracting the inviscid rates. The destabilization
at both the short- and long-wave inviscid cutoffs (K>
= (.36, 0.93) is evident, with that at short wavelengths
continuing as K — co.

Turning to potential vorticity damping, one can
verify that if the damping is the same in each layer,
then dw;/dy = —1, as would be expected on the basis
of (4.1). But if we consider potential vorticity damping
confined to the lower layer (v, > 0; v,; = 0), in analogy
to the low-level damping considered.in HPP2, we find
significant destabilization. In this case, (4.3a) again be-
comes (with nonzero P)

301/ = —a /(2 PQyy). (4.4)

Here, waves are destabilized when the product PQ,, is
negative. For subcritical shears this cannot happen,
since (5, is positive, as is the pseudomomentum for
each mode. Thus, the minimum critical shear for in-
stability is unchanged by the addition of small lower-
layer potential vorticity damping. For supercritical
shears, both the short and the long-wave cutoffs are
removed, as shown in Figs. 7b and 8b. Most impor-
tantly, for stationary wave theory, the external mode
is destabilized when P > (). As a result of low-level
potential vorticity damping, such as might be generated
by baroclinic transients, a stationary wave will amplify

in the direction of its group velocity (as long as the
lower-layer wind is not so small that P < 0).

Figure 9 is a plot of —k; as a function of v,; and U,
for U = 1.5. The maximum value of k; = —0.084 is
reached with v, = 0.24 and U, — 0. The nondimen-
sional wavelength A = 2x/k of this stationary mode is
9, giving a maximum value of |Ak;| = 0.80.

For thermal damping, we find

dwr/dyr=y* (a— W)U, /Uy — a)/(4U, P).  (4.4c)

The modes that are destabilized are shown in Fig. 7,
as can be verified using the values of o shown in Fig.
1 and the remarks in section 2 on the sign of Qg
oc (e — U, /U,). A critical shear required for instability
no longer exists due to the destabilization of the ex-
ternal mode when U, > 1 — U, i.e., when winds are
large enough to trap the internal mode. In the super-
critical case, the external mode is destabilized when P
> 0, and a small region near the short-wave cutoff is
also destabilized. Figure 8c shows the corresponding
change in growth rates for yr = 0.1. There is no long-
wave cutoff in either the subcritical or supercritical case,
while the short-wave cutoft is shifted to K = 1.

5. Conclusions

The two-layer model’s success in modeling stationary
responses to localized sources depends to a great extent
on the number of horizontally propagating modes, the
structure of these modes, and the sign of their group
velocity. When the shear is supercritical, the internal
stationary mode is horizontally trapped, and there is
no need to be concerned with contamination of the
far-field response to localized forcing; the external mode
will dominate the far-field, as it does in continuous
models for typical midlatitude conditions. On the other
hand, if the shear is subcritical and the lower-layer wind

_is small enough that the mean wind (U, + U,)/2 is less
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FIG. 9. Spatial destabilization by potential vorticity mixing; level
curves of —k;, regarded as a function of v, and the lower-layer wind
required to make the mode stationary.

than 8\?, the internal mode can propagate horizontally.
Even this horizontally propagating internal mode need
not be considered artificial in all cases; internal modes
trapped by tropospheric winds are also a possibility in
continuous models if the shear is weak (but not too
weak)—see Fig. 2c.

A source of error due to the structure of the external
mode when the shear is subcritical is that as the lower-
layer wind approaches zero, the mode becomes bottom
heavy and develops arbitrarily small scales, unlike be-
havior in either the supercritical case or in continuous
models. This can result in serious distortion as station-
ary external waves propagate equatorward to the low-
level transition from mean westerlies to mean easterlies.

None of the continuous models considered in HPP1
had modes with negative pseudomomentum. However,
the two-layer model’s external mode does have negative
pseudomomentum when the shear is supercritical and
the lower-level wind is smaller than a value U depen-
dent on the shear. Due to the corresponding change in
sign of the group velocity, forced responses will show
upstream propagation. This behavior has no analogue
in the Charney model, and although it can be repro-
duced in continuous models by decreasing the surface
temperature gradients near the ground, it appears to
be undesirable.

When the shear is supercritical, the dispersion re-
lation for the two-layer model in its broad character

FIG. 8. (a) Temporal destabilization for U = 1.5 and vg = 0.1;
viscid minus inviscid rates; (b) as in (a) but for potential vorticity
damping v,,; (c) as in (a), but for thermal damping yr.
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resembles the Charney problem and the modified
Charney problem discussed in section 3. Each has an
analogue of the external, Green, and Charney modes:
the external mode branches at a phase speed cp into
the Green and Charney modes. It happens that ¢z is
smaller than the lower-layer wind in the two-layer
model, equal to the surface wind in Charney’s model
{ignoring the non-Doppler term), smaller than the sur-
face wind in the modified Charney model, and larger
than the surface wind in the hyperbolic tangent profile
of Fig. 2c. For phase speeds less than c¢g, the external
modes in the two-layer and Charney models behave
in a completely analogous manner. The continuation
of the external mode under various forms of damping
into the exponentially growing or decaying Charney
mode is qualitatively identical. The external modes in
each model are stabilized (both temporally and spa-
tially) by Ekman pumping, and destabilized by thermal
and low-level potential vorticity damping,.
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